TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks,
For a personal retention copy, call
Tech. Info. Division, Ext. 6782.

=
-




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



A SOLUTION FOR TM~MODE PLANE WAVES INCIDENT ON A
TWO-DIMENSIONAL INHOMOGENEITY

K. H., Lee and H. F. Morrison

Lawrence Berkeley Laboratory
Engineering Geoscience
University of California
Berkeley, CA 94720






ABSTRACT

A solution for the electromagnetic fields scattered from a two-
dimensional inhomogeneity in a conducting half space has been obtained for
an incident TM mode plane wave; the magnetic Fieid is polarized paraliel
to the strike of the inhomogeneity. The approach has been to determine
the scattering currents within the inhomogeneity using an integral eguation
for the electric fields. This solution is similar in concept to earlier
studies of TE mode scattering from two-dimensional inhomogeneities, and it
completes the analysis of the scattering of arbitrary plane waves using the
integral equation approach. Fbr simple bodies in the earth integral
equation solution offers significant compﬁtationa} advantages over alternate

finite element or finite difference methods of solution.



introduction

Quantitative interprefatfon of magnetotelluric surveys depends at
present on the availability of efficient forward modeling algorithm. To
date two major numeriga] techniques have been used to obtain the scattered
fie?ds from buried inhomogeneities in plane wave fields; methods solving
the governing differential equation which generally uses a finite element
or finite difference approach and methods which solve an integral equa-
tion formulation of the problem.

For two-dimensional inhomogeneities a solution for incident fields
with the electric field parallel to the strike of the inhomogeneity (TE
mode solution) has been developed by Hohmann (1970) using the integral
equation approach. For a perfect conductor an integral formulation, for
surface scattering currents, for the TM mode (magnetic field parallel to
the strike of the inhomogeneity) has been developed by Parry (1969).
General two-dimensional solutions in the presence of an arbitrary mode
plane wave (mixed TE-TM) have been obtained by Ryu (1971), Swift (1971),
and Rijo (1977) using either a finite element or finite difference tech-
nique.

To our knowledge the TM integral equation solution for the general
case has not been presented. The solution presented here thus completes
the analysis for the scattering of arbitréry mode plane waves from two-
dimensional inhomogeneities using the integral equation approach. Apart
from significant computational advantages in forward modeling of simpie
geologic bodies for magnetotelluric analysis, this solution is important
for evaluating the results of alternate numerical methods used for more

complicated geologic models. It is becoming evident that for many of
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the current numerical modeling schemes, there are no convincing checks
on the accuracy of the solution. 1t is Imperative therefore that several
solutions be obtained by differing methods and be compared until confidence

is attained in these solutions.



1. Formulation of two-dimensional integral eguations

In their general form, Maxwell's equations are written as follows:

- uxE o= ol + @ (1.1)

v , ui . . .. . .
where M' and J° are impressed magnetic and electric currents. Through-

. jwt L. , . ) . o
out the paper an e’”" time dependence is assumed. Harrington (1961) has
shown that a generalized integral equation solution can be obtained by

rewriting (1.1) and (1.2) as

VxH = (c.iérjwe}) E+ 37+ J

where #° and J° are scattering magnetic and electric currents
representing the inhomogeneities in the half space of electric and
magnetic constants Oys My and £ (Figure 1.1). Equating the
right hand sides of (1.1) and (1.2) to those of (1.3) and (1.4)

respectively, we find that the scattering currents are zero everywhere

except for the inhomogeneous region, in which

S = Juliy = 1) f (1.5.1)



3% = Aok (1.5.2)

where
Ao = (OZE 07) + jw(ez~ 51) .

In the absence of active sources and magnetic inhomogeneities, equations

(1.3) and (1.4) become

- UxE = jwuiﬁ (1.6)

v x H= (og*juey) E + 3% .
The total field can always be written as the sum of the incident (i)

field, the field that would exist in the absence of the inhomogeneity,

and the scattered field (s), such that

HY o+ RS, (1.9)

|
i
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and consequently Maxwell's equations for the scattered fields are

written as
- UxEY = JuugH® (1.10)

(1.11)



Equations (1.70) and (1.11) Tead to a Helmholtz equation for the

scattered field E° in the inhomogeneous region

(v24-k§> ES = Jun3° (1.12)

The solution for (1.12) can generally be written in the form of an

integral equation as

E3(F) = fjf CE(Pr) - 3S(FY) ds (1.13)
Sl
and
(7 = JJ' e - IS ds (1.14)

where r and r' are the vectors describing the positions of observation
and source respectively. é(?; r') is a two-dimensional Green's tensor
defined as the scattered field at r caused by a unit current density
Tocated at r'.

One way of obtaining G(r;F') is to find a single vector potential w

and relate it to the scattered fields defined by

ES = (%n o+ v(ve ) (1.15)

i

(o+ jwe) Vxm (1.16)

el
i

where 7 1is the electric Hertz vector satisfying the inhomogeneous

Helmholtz equation.
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2)%: ”qj&m 8(x-x") &§(z-2z") (1.17)

(vzé’k

in Cartesian coordinates. The particular solution for (1.17) is shown

in Appendix A as

R

- J 1 ~ulz-z'| |

= - %%%‘“é’[ u © 412 cos kx(x-x") dk,
0

=

where
- (k222

The homogeneous solution 7° for (1.17) is subject to the boundary
conditions and it satisfies
(VP +k2) 75 =0 . (1.19)

The total vector potentials in the homogeneous half space generated

by current elements in it are given by Appendix A.

. J C? g‘wu.lzg_z‘t Eu‘?(Z_%_Z!)"%
= o odwu x| 1 1 ! ™
"x 22 ) [€ + Reye é cos k (x-x") dk,
0 (1.20)
o Y ro-uylz-2'| ~u (z+z')1
o o_dwy —z | 1 ] ) 1 , .
Mz an |2 J U, e Reye | cos k (x=x") dk,
Ho (1.21)
2 2
. - kou1 - kiuo
where R =
™ ) N 5
KUt * Kylp



and Jx and JZ are the scattering current densities directed in x and z
respectively.

From equations (1.15) and (1.76) and by the definition of Green's

function, the elements of Green's tensors GE(r;r‘) and G (r;r') can be

written as

GE = /kz-'r*@i-\}iﬂ (1.22)
XX k\‘i 2] X °
: 2
S ;
Grx = 3z5% Mx (1.23)
k2 .
IR T T \
ny Jup 9z Tx (1.24)
- 2
E_ 9 i 1
Gz = x5z Mz (1.25)
2
£ /2 WL\ : 1
GZZ = g\ki + 2/ WTZ (1.26)
3z
2
k
HoL M
Gyz SO0 % Tr]z (1.27)
where the primed potentials wéx and ﬂ%z are just the potentials
i

§

due to a unit current densities of Jx anda JZ respectively. One can easily
verify the reciprocity theorem by substituting (1.20) and (1.21) through
(1.27).

With éE(;;F‘) and EH(F;F‘) known, the total fields at ¥ can be

rewritten for (1.8) and (1.9) as

E(r) = ET(r) + [j' ) - ISR ds (1.28)
ARy = iR ” Hrry 3Gy e . (1.29)
S!



2. Evaluation of the integral equation

Computation of the scattering current

It is the definition of the scattering current J° that enables us
to compute the electric field E in the inhomogeneity. In other words,
upon substituting equation (1.5.2) into integral equation (1.28), we can
solve for the electric field in the inhomogeneous region provided that
the Green's function and the incident field are known. In practice the
inhomogeneous region, S', is divided into a finite number of rectangular
cells, Figure 2.1, such that a constant current density over each call
can be assymed. With this assumption the integral equation (1.28) can

be rewritten as

E, = Ei + ; po (?E . E } i=1,N | (2.1)
i i N jVviig T3 : ’
Jj=1
where
E E
= Txxij Txzi]
Iy = . (2.2)
bl E E
P2xij 221
The e?ements composing fgj are ihtagrated Green's functions, for
exampie,
E _ E = =
Foxij = jJ’ Gpx(rysr') ds (2.3)
;

where the integration is carried out over the jth cell of S'.

i

Using the quasistatic approximation, Ky ~ 0 , we can reduce the

factor Ryy to
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Rew = 1. for all k

It can be shown that the integrations in Kx space leads to the following

analytic results for ny, and mi

ix T 7 7 [KolIkmy) * Kolikgry) ) (2.5)
7
dou 1, 1
i - - . /= _=| o i
Mz T T 2 [folikiry) - Kolikgrp)] (2.6)
4

where KO is the modified Bessel function of the second kind of order zero,

and

g
i
—
>
1
=
—
+
——
N
+
N

The evaluation of T 1is given by Appendix B. Special care is taken
for the situation where the Green's function becomes singular. Rewriting

the results for the electric fields,

E L Juu
XX kZ 513 (2.7)
1 - ]
o /(Y' ZT’“Zi 5 Z;i+z| ' jﬁ éb
" ik j | k) - e K k) ‘ dx
XR J Z.t
X z
E - _\l@i:l. [_ E . . &?s r I b
xij T 7 2 Rolikimy) - Ko(3kyry) | } | (2.8)
] XSL Zt

-10-



£ Gy 1 r T e b
_ 1 . N
iy = en (2 E_KO(JkTr7) + Koldkyry) | f ’ (2.9)
1 Xo  Zy
pb o Juwl g
221 k2 1] .
1 (2.10)
Wl 4 Hrx;x‘ X=X ! A
- | Efi G - K.i<jk1r2>jf dz
Zt XQ‘
where
Sij = 1, for Xy < X < X, and zt < Zi < zb
Sij = 0, for (Xiszi) outside of Sj
and
t
f(t) = f(tz) - f(t1) . (2.11)
t

The notations Xgo Xpo Zyo and z), are shown in Figure 2.1, and they are
consistent with those used in Appendix B.
Equation {2.1) can now be rewritten in a numerically equivalent

matrix form as

where the elements of K are given by

= ZE = L.
K.. = Ao, T, - 8.., i3 = 1.N
ij j i3 T %43 v

“11-



with

Oo bl

iJ

and

i1

i for 1 #3 .

The electric field in the

(2.13)

where the incident field E' can be easily computed in the absence of the
inhomogeneity. The scattering current J°% is then simply given by

equation (1.5.2).

Computation of the fields on the surface

The electric and magnetic fields outside of the body are obtained
using the same integral equations (1.28) and (1.29) by substituting
the scattering current obtained in the foregoing section. The Green's
function is evaluated at the earth's surface. Equation (2.1) is slightly

modified to

-3 N = -
= ET 4 + E TEJ e S
Zk:o j=1 ZkZO

E

Cos

klzk=0 (2.14)

~17.



and for the magnetic field

where

B ; ) {
r. = 4T
kJ zkﬁO yxkJ yzkg

=0 xxkg xsz\E
- (2.16)
kjIz =0
K .
ZXkJ ZZkJ 2= 0
> (2.17)
and M is the number of field points on the surface.
It can be shown that the integrated Green's functions eva?uated at

the surface are as follows;

E _ Wl r Z g X!
Fxxkji _ - ﬂ_k ( gr 7rOj ( (20‘18«:?)
for zy > 0, and % “t
TE } Jwp , oy jxr gz' K. 5k {% e (2.18 2)
. = e | j r Ox 3 0
xxkJ 2,20 k% K, |70 1010 jz
Xy b
for Zt = (§ and X < xk < xz .
Xz
. b
E Jodeu 1y s ’
Tazkil. =5 —7 Kolikyrg) | I (2.19)
z, =0 k
k 1 X Zy

with s in (2.18.1), (2.18.2), and (2.19) defined as
roo= ii(xknx;)z + 2;2}1/2

It should be noticed that
<13
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2,

-0 77K Z=O kaj!Zkzo = yzkj
J
(2.20)

In other words, there is no secondary vertical(z) electric field or

horizontal(y) magnetic field caused by the scatterer in the half space

3. Scattering in a two-layered earth
Consider the case of a conductive body buried in the lower half
a two-layered earth. The vector potentials in the first and

space of a
second layers are found 1in Appendix A,

use of the guasistatic approximation, kO

Rewriting the results by making

~ 0

9

; “u UaZ  =U.Z\ =~U,Z'
I (1 I A P P 1 2 o
"1x 2 k2 j u2 RTM e +te e cos kx(x X )dkx (3.1)
1 1
i 1 U,z =ugz\ -u,z'
L N N [ 4s U 2 Y
Mz ’n 2 J Us Rey Re e > e cos kx(x X )qu (3.2)
1o

5 ”u2(2+z‘=2d)
. cos k {x=x') dk
X X
J

(z+z'-2d)
cos kx{x-x') dxX

~14-



sech ujd

o
(]

where q
tanh u.d

u2
k7 UT 1
20
i

4

k 2 U
«g-taﬂh u,d
k. Uy ' ]
2
{ ?

and d is the thickness of the first layer. The @Green's function in eath

W

—= tanh uld

Tayer is given by equations (1.22) through (1.27). The scattering currents
are computed by using ”éx and W;Z in the lower half space in the usuai

manner discussed in the homogeneous half space case.

The scattering currents in the Tower half space

The integrated Green's functions to be used for the formulation of

equation (2.1) are found in Appendix C as

| X 07,-7" ? Zy
£ . Jwu __wy i .
xig T 2 Vi zTrsz { G kpr] iz X
’ w 2 : X Z
(R “UpZ, [ ~U,Z ar 1 %b
+~%f£ 12 J M 2T {% 2" sin k (xomx')] { dk
T g kX X1 X .
2 0 2 t
Xz
- . b
B duw 1 ’
Fyxij 2n |2 Koldkor) s
2 2 t
(3.6)
o 2 X z
R Unz, [ -U,2z' T "¢ ("b
+ %%E’iz ( 1M 2 {% 2" cos k (x -x')] dk
v K& ) UZ % 7
2 0 2 t



i) .
pEL s do Ty jou 1 [ "M TUp%y
lxz%j oo 2 KD(JKZW) } - 5 ??“J —
2 X Z¢ ko 79 2
: (3.7)
F Uz T 7% b
f wy P
Le cos kx(x X >j Jx B dkx
g t
Eooedu g o be ?*iuXi K (Jk w}u‘%f lxr dz
2z1) kg ij o 2k, 2, L [VR2 ﬁ 3x2
(3.8)
. .k “UpZ, T ~U,z' T 5% %
| 2 il !
gé%f"éf '”% Ryy © = Le 2" sin k, (x v-x’)% dk
“2 70 Y2 4 gz,

Once the elements of Green's tensor are computed, the electric fields

in the body are found by (2.13) and finally the scattering currents are
computed by (1.5.2). These elements can not, in this case, be integrated
analytically and consequently extremely time consuming numerical inte-
gration in kx must be carried out.

Computation of the Tields on the surface

The electric and magnetic fields are computed in the usual manner.
However, the Green's function to be used for the surface fields differs
from that used in the lower half space. The elements of integrated
Green's tensors evaluated at the kth field point (xkg z, = 0) are

given by Appendix B.



o ] . = X Z
| : Rens | =U,Z! Fr b
] ;.@y_iéf e "2 cos k (x,-x') | |
ZKSG i KT 79 2 i d X 7
2 T
(3.10)
Ho H E E
T i a=T . =T . = 7 . =
yxki|z, =0 = " yzk 2,20 zxkil, .o zzkil, .
(3.11)

Substituting these elements into equations (2.14) and (2.15), we obtain
the total electric and magnetic fields on the surface. It is interest-
ing to notice that, on the surface of the earth, neither the horizontal
secondary magnetic field (H;) nor the vertical electric field (Ez) is

present. The same result was obtained for the homogeneous half space.
4. Computation and evaluation of the results

There are basically two kinds of numerical integrations involved

in the previous sections. They may be symbolically represented by:
*2
Iy = f ., (x) dx (4.1)
1
” 'sin ax\
= | 00 o . (4.2)
0 COS ax

The first integration can be done by simply discretizing the short

-17-



interval into a proper number of small sections Ax. , such that

[g»]

oy

The operation is simple and fast. The number p is kept to a minimum

[

because the integrand f}(x} is a slowly varying function of x in the
interval specified. The second type of integration is rather time
consuming, especialiy when |a| is large so that the functional

fluctuates more vrapidly. Since the major contribution to 12 comes from

the first few cycles of the trigonometric function used, we may approximate

12 as

.9 i /sin ax\
A ACON  dx (4.4)

cOos &X}

where ¢ 1is the number of half cycles. Each haif cycle is evaluated by a
Gaussian gquadrature voutine. The number ¢ is increased until a given

convergence criterion is met.

The numerical results obtained here have been compared to the
solutions found by Ryu (1970} using the finite element method. Apparent
resistivity and the phase of impedance are derived accordingly from both
solutions. |

The first model is a rectangular conductor of 200m x 50m in size
buried in a homogeneous half space with varying depths to the top of the
conductor. Figure 4.1 and Figure 4.2 illustrate the responses of the

safme conductor exposed to the incident fields of 100 Hz and 8 Hz

~18-



respectively. The heavy and dotted Tines represent the apparent
resistivities and the impedance phases respectively. The symbols &

and * denote the corresponding solutions obtained using the finite
element method. Within the range of + 0.5 kmg both methods generate
basically the same solutions except for the minor disagreements
displayed at the top of the center of the body. However, as the depth
to the top of the conductor decreases, the gaps between two solutions
become significant at the center, especially when the comparison is made
for the phase of impedance.

It has been observed that the finite eiement solution, aided by a
recently developed fast matrix inversion routine, needs more than twice
the computing time required for the integral equation solution for this
particular model. Explicitly, it takes 3 seconds by CDC‘76OO to obtain
one fintegral equation solution, for which the given modeil is broken into
16 smail square cells.

The next model investigated is a conductive dyke with varying angles
of dip as is shown by Figure 4.3. A dipping boundary of the body
is simulated by stacking small rectangular conductors in such a way that
the overall dip angle is preserved.

< o

A maximum phase difference of 5% s observed between the models for
o = 0% and o = 45°. In the down dip direction for the case of o = 45°,
the apparent resistivities obtained from the integral equation solution
are up to 25% higher than in the soiutions obtained by using finite
element method. The main reason for this is that the cell size chosen here,
25m x Z5m, is not small enough for either method; 25m is only half the

skin depth in the body for the frequency used. Because of the dipolar

characteristics of the electric fields, the surface fields are strongly



dominated by those current elements close to the surface. In other words,
small errors associated with the Scatieriﬂg currents in the cells close

to the surface could cause significant effects on the surface fields.

The effects are relatively stronger where the true magﬁiﬁu&es of the
electric fields are smaller.

Figure 4.4 shows the anomalies of the same conductor used in the first
model with an overburden of 25m in thickness. The vresistivity of the top
layer plays a major role in determining the background apparent resistivity
as well as the phase of the %mpedeﬁceq With three different resistivities
of 5, 10, and 25 ohm-m assigned to the top layer, the phase anomaly
never exceeds 5 degrees and there is only a small, constant, phase difference
between the two technigues. -As far as the effects of the overburden and
the medium surrounding the body are concerned, they are analytically taken
into account by the integral equaticon through the Green's function.
Therefore, the small differences in apparent resistivity between the two
solutions is Tikely due to the finite element solution where the same kind
of Tinear field behavior 1is imposed upon the elements within the body as

well as outside of the body including the overburden.

5. Remarks

The sotution of the integral equation depends primarily on finding
a Green's function pertinent to the geometry under investigation. It is
unfortunate that the available Green's functions are Timited to those for
Tayered half spaces. However, given the Green's functions, it is necessary
to solve for the scaitering.current only in the inhomogeneous region.
This is the major advantage of the method discussed here over the finite

difference techniques.

=20~



Because of the complexity involved in finding the Green's function,
half spaces composed of more than two layers have not been considered.
Major emphasis has been given to the case where the earth is a homogeneous
half space. In this case, both primary and secondary Green's functions
have been shown to be analytic. Hence, the integral equation approach
is better than the finite difference technique for simpie inhomogeneities
such as a thin dyke or some other small conductors buried in a homogeneous
half space.

The following chart iilustrates the comparisons between the two
methods in terms of the total computing units, and the costs, required for

the computations of the fields for a single frequency.

Finite Element ' Integral Cquation

CPU  Cost ($) CPU (Cost ($)
Model 1 40,  1.70 7. .50
Model 2 : 165. 11, 15. 1.10
Model 3 45 1.80 40, 2.20

The Lawrence Berkeley Laboratory CDC 7600 computer has been used for‘the

computations. We have selected 34 surface field positions (17 for the

symmetric bodies) for apparent resistivity profiles drawn in the Figures.
The series expansions of the modified Bessel functions, KO and qu

and the numerical integrations in k space converge faster when lr-v'|

is small. It has been observed that approximately two thirds of the total

computing time is spent for the computations of the surface fields for the

models considered here.

A remarkable advantage of the integral equation approach can be

-?271-
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found in a magnetotelluric study. Suppose we wish to have the response
at 30 frequencies at one station on the surface of Model 1. The cost
required for the computations of the electric fields in the body for 30
frequencies will be $5, a third of 50 cents multiplied by 30. Since the
average cost required for the computation of a surface field will be two
thirds of 50 cents divided by 17 field positions, it will cost less than
$1 for 30 frequencies at a single Tocation. The total cost required

for the computation of the response at one magnetotelluric station will
be $6 by the method discussed here compared to approximately $50 (30
frequencies multiplied by $1.70) by the finite element method. The two
methods become effectively the same in terms of computing costs for a
model, the inhomogeneous cross sectional area of which is approximately
10 squared skin depths, a size equivatent to 40 square cells of .5 x .5
skin depths.,

Another advantage of the integral eguation approach is that it offers
an easy access to the derivatives of the field quantities, a procedure
necessary for the inversion of the field data.

Rewriting equation (2.1) with ho substituted by (Qjag) in the

expression:

E:ijJr Z (0.-0) %\F:.@Ej>9 i=1,N. | (5.1)

- . . = . - t
fhe derivatives of  Ey with respect to the conductivity of the 2 h

cell can be written as

PP



Equation (5.2) is N linear equations for each component from which the
derivatives of the electric Tields in the body can be obtained. The

derivatives of the surface fields with respect to the conductivities of

. BE“
each cell can be found by substituting 551< into the similar equation
A
derived from (2.14) as
3Ek| z,=0 f;E - \ N f;E o5 ,
5o * ka2 :ogtz/i“" Lo(ogmo) gl 055,/ = B
% \ k j=1 k 2

Substitutions of H and Fh into equations (5.1), (5.2), and (5.3) will
produce the deri&at%ves of the surface magnetic fields with respect to the
conductivities of each cell. It is particularly interesting that for

each iteration in the inversion process the same Green's functions will

be used resulting in a fast iteration time.

~23-
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(Caption of the Figures)

A two-dimensional inhomogeneity of arbitrary cross-

section.

A simulation of a two-dimensional inhomogeneity

N rectangular cells.

The apparent resistivity and phase
Model 1 at 100 Hertz.

The apparent resistivity and phase
Model 1 at 8§ Hertz.

The apparent resistivity and phase
Model 2 at 100 Hertz.

The apparent resistivity and phase
Model 3 at 8 Hertz.
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computed for

computed for t

computed for t

An N-Tayered earth with the scattering current,

in the ith Tayer.

A rectangular current cell.
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Appendix A

Consider an N-Tayered half space upon which a TM-mode plane wave is
incident. A two-dimensional conductive inhomogeneity can be represented
by a distribution of current elements over the cross sectional area
oriented perpendicuiar to the strike. Suppose that a point current of
density J% is located at (x*, z') 1in the iih layer as shown by Figure

A.T. Rewriting equation (1.17) in the ith layer

KL
2,2\ = _ 3T g o
(Vi) 7, = - g Sb ) elz-2) (A.1)

Fourier transforming (A-1), we obtain the primary potential as

wj(kxx'+kzz‘)

=P _ Jwu s e
’!'T.:i (kxskz> - = kz J u2 . kz (A..Z)
i f z
_ 2 ]
where ki = (w u€€==30iwu)

2 _ .2
uy = kx K.
M= My ® My T = My

Inversely transforming (A.2) in k, (Erdelyi, 1954),

L =ui[z~z’(
%E (k_,z) = = QQE=JSe e (A.3)
i X 2 U
.Zki i

o 7 i
kax

Fquation (1.19) can be rewritten in each layer as

7 o= 0, i=0,N. (A.4)



where the directions of

all subject to boundary

(A.5)

unit vectors 1. and the coefficients Aj and Bj are
J
conditions with initial constraints.

A.(k ) =B

0*"x k)

N( W) = 0.

1. Homogeneous half space

Tox = Bg e in the air (A.6)
UyZ -U,z
o= e +Aje ', in the earth (A.7)
IX  uy !
where
5 -jkoxt o-ugz!
a = - ng JX e X o |
2k1
From equations (1.15) and (1.16), we have
5 2.
Ep=-um (A.8)
ot
S o X .
EZ Jk, 5 (A.9)
2 om
hy Ton oz (A.10)



Matching boundary conditions at z = 0, we obtain

2 - 2/}_}‘_ ‘ -5 1773
UOBO = ur} Lé\u?‘*’f\-§>9 for EXIZ:O (A.T1)
2 . 2 2 s
KgugBg = kjo = kjuzAqs for nyzzﬁ . (A.12)
From (A.11) and (A.12),
.o
A7 0 RTM (A.13)
k?xz.§
By = z%~2 (A.14)
0 kOUT + k?uo

where

CJo 7 [ -uq|z-z"] ~y-{z+z")
= qu J;_ L i j 3 7 -
Ty = 5 kz J 'u? E% + RTMe cos kx(x x') dk
10 (K.15)

In much the same way, the z-directad vector potential in the half

space can be derived as

A-3



jan %z (1 [ wle? ~up(zvz') |
" :%”7?¢«gz-[ G?-ié - RTMe j cos kX(X*X )dkX
o (A.16)

2. Two-layered half space

Suppose that the inhomogeneity is in the second Tayer.

=g T
3. =
N dxix

The potentials in each layer can be written by using equations (A.3)

and (A.5) as
Uy (
Tox = BO e ", in the air A.17)
“UqZ ' uyz ,
T, = Aje + Be in the first layer (A.18)
T ~UyZ
T,y = — @ + Ae , in the source region (A.19)
2X Uy 2
where
_ o dw ewjkxx emuzz
ol X
2

Matching boundary conditions at z = Z1s and z = Zy by substituting Ty

3

into equations (1.15) and (1.16), we obtain at z = zy = 0,

A-4



2 _ 2 )
BOUO uj (Aq+81), for E ! (A.20)
_ 2 _
kOUOBO k1u1 ( A1+B=]) for H}’IZ 0 (A.21)
andatz:zzzds
-y.d u.d u,d =U,d
2 Uy 1 2(a Y2 2
uy <A.ie +B.]e )— Us <-u2 e +A2e . for Exiz ~d
(A.22)
=y d usd u,d U ,d
2 U 1Y 2 o 2 2
k.iu] <~»A1e +Bqe >— kzu2 <_JE e " -hAje >9 for Hy’z -
(A.23)
From equations (A.20), (A.21), (A.22), and (A.23)
2
ksu 1
B = 20 22 1 Ryy (A.24)
0 2 U
kyu 0
171
2 2
kou u k
_ %Y 1 (Y% KXo
A‘i T o kzu U <u] k2 RTM (A.25)
171 1
2 2
KLU U k
B.IWSZ—L —Q-%—m%TR (A.26)
Ku, Y1 \Y1 K8/ ™
171 1
2Uund 1
- A
Ay = e . Ry (A.27)
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u?d
where 1 e “ sech u1d
R =

™ /uO K uy fug 2
-z | — + — tanh u,d ] + — | — tanh u,d + —&

2 lu 2 1 u u 1 2

k 1 k 1 1 k

1 1 1
kg Uy k% Uy g kg
—% — + — tanh u,d} - — |-— tanh u.d + —

2ty 2 1 U, Lu 1 2

k 1 k 1 1 k

ZR _ 1 1
h k% Yo kg Yo (Yo kg
—z | — + —% tanh u,d}] + — {— tanh u,d + —=&

2 \u 2 1 U, Lu 1 2

k1 1 k1 1 1 k?

The vector potentials in the first and second layers are written as

1x
(A.28)

By following similar algebraic procedures, we can easily arrive at

the following vector potentials in the first and second layers.

o

:m;]_;’-*.)}:l,:}};[ 1 ~iR

™z " %n T2 U, M
kK] /g 1
) ) (A.30)
o, ko) ok
“u 2
K 1K
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(z+z'-2d) g

]

. ’ ') di
cos KX(X x') d&x

(A.31)






The integration of the Green's function over the area occupied by the

Eho ) . , . .
7 cell of rectangular shape is evaluated at an arbitrary position {(x..z.).
{ H

Green's functions for the homogeneous half space

ot}

Rewriting equations (2.5) and (2.6), we have

Ty S o »KO(Jk?r?) + K0<jk?r2>d (B.1)
_I — i o N /a» N )
T, o &KO(JKTTT) - KO\JK?rZ)‘ (8.2}
= = - Jwu 1
where a g k2 .
' 1
Throughout the article, the foliowing relationships are used
y . 5 .
§§'T(F1) = - 5;7‘F(T1> (B.3)
E .
3% T(rp) ox T(ry)
) ..
ﬁf’f(r?) Tz f(r])
0 9 r

Figure B.1 shows the geometry of a rectangular cell in the half space.
The field point (Xﬁs Zi) is arbitrary. If the field point is in the cell,
an arbitrary circle 2, of radius R is drawn about the field point. The

vectors ﬁig i=1, 2, denote the unit vectors outward normal to the region

B-1



Sia i=1, 2, over which the integration is carried out.

E joliel
1. Gxxij(rgr )

From equations (1.22) and (B.1)

/ =y
) o\ .
‘ = ( ‘2 “a“" i il - ik.vr g byt § '
Pyxiy = @ JJ (f] + axé)ifo(JK}ri) + KO(JK?,sz dx'dz’ (B.4)
53 -

If the field point is in the jth cell, Sj‘ is divided into S.ji and SZ“ The

primary potential Ko(jk}ri)is singular in S,. The following equation
holds for the vector potential m in the non-singular region SZH

(7% + K2)

(5.

jev)
(&3]
St

By using (0.5), equation (B.4) may be rewritten

.ﬂE'M‘f;/z 5° s
lxx?«j =0 JJ Kk—; + ”8“'“2‘ KO\Jkirq) ds
S x
1
2
([ 3 :
- Q ~ K (Jk,v,) ds
J) 5,2 ot
5,
82 .
-0 JJ ww§<KO(3kTr2) ds v (B.6)
: 07
St
J
- I? * 12 * 131

The first part of Ij may be evaluated in a manner similar to that used
by Richmond (1965).

e . . . :
i [ kotanry) as = om figp G- 1] )
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The second part of 13 may be evaluated in the following way: because of

the symmetry,

a2 1 T2 ]
fféii-K (ko) ds = o j( T (3kyri )l ds
2o T?j;?o 1322 0 HMO
51 Sy
from equation {?017)
W + k /5 ak Jk m) = - 2ma 8(r-r')

A

Integration on both sides in Sy evaluated at P o= ;0 yields,

(1%, | j( r ’E ;
O S.,i

1

r=r,
by (B.7)
= 21 - 27 szR K?(JklR) - 270 ,
Hence
Y 1 | “ . ‘
a {J Ejiz»KO(Jklri) __ds = - JK?WQR K3(Jk1R) . (B.8)
Lax r=r
31
82
I, = ~-a jj L K (jkyro ) ds
2 822 CARA
3
_ T 9
= - q JJ Ve i, 53 KO(karj) ds
52 z; - z'

= - jkia - KI(Jk]ri) 1.0, de

L.
i
i z;-17' ~
- Jkya 2 K?(Jk7r7) 1, e n de

%5



along Ly, we have

iz ° n2 =, for x' = xga Xr
?z ﬁz = 1, for z' = zZ,
72 ﬁZ = -, for z' = Zis
hence
= - jk}ﬂ@R Ki(jkiR)
X éﬁz‘i«z’ w% y
- jk @j - Kq (Gkqro )i I dx’ (B.9)
P 11 AR
9 v t
Simitariy,
82
13 = -0 {J ;’Z KO(JK=;Y‘2) ds
. 07
Ny
J
Xp §Zi+2’ n 1 Zy )
= Jkia Jx E, 5 K?(Jk?rz)j * dx' . (5.10)
% 42

th

In the case of the field point being outside of the j~ cell, it can

be easily shown that

X fed i =2 Z
2 3 , r [2;-2 k b
a JJ kﬁg o KO(JK?W?) ds = JkTQ J e”jj“”‘K}(j 1r1) } dx
X X 1
i 2 Z,
S, t
> ‘
(B.11)
Finé??y from equations (B.7) through (B.11)
E , *p ?zimz‘ “ zi+z' , 7 2y
Fxxig = 7 210 345 JmJ %L K lkgry) = = K (k) || dxe
Xy i 2 1z
t
(B.12)



where Sij is defined by

Sij =1, for Xg < X5 <X, and 2, <2y <
S_ij =0, for (xﬁszi) outside of -Sj .
E el
2 sz13(r5 ')
From (1.23) and (B.1)
E ( 32 B
Tyxiy = @ JJ To3x [Koldkyry) + Kol3kyry) ]
S,
J
By (B.3)
E 2 T v vt }
Fyxij = @ ” 57 |Koldkyry) = Kolkqry) | ds
S,
j
gt 1
o | Koldkyry) = Koldkyry)| ;
2t
Hoo = =,
From (1.24)
ka {. :
H e »
Pyxii = 7 Tam JJ oz LColdkgry) + Ko“kﬂ”z)g ds
5
By (B.3)
ke
Hoo 2 0 s T
Tyxiy = Jun || 27 (Kelikyry) = Koldkyrp)f ds
S. -
J
(Xk? X‘(\ o= zb
=t &K (Gkor.) = K (jkyr )j dx’
Juwu jx ORR B o1 2
) ‘t

2

(B.13)

(B.14)

(B.15)

(B.16)



] PR I
& xzij(r?r /
From equations (1.25) and (B.2)
o[ o [NE - Ko(ikyry) | d (B.17
Ty "o JJ‘mi [Koldkyry) = Kolikyra) ] ds h.17)
S.
J
By (B.3)
X Z,
E NS (5.18)
Tezig = o [Kolikyry) + Kolikyry) | x|z “
A A
5. G, .. (rrt)

From equation (1.26)

—
?\ T
_...‘

\‘-“\

L]
amsand]

J //2 822/ iK (Jkqry) = Koldkqr 2)} ds . (B.19)

As is usual, the area SJ is divided into two regions S, and 5,. Then by

equation (B.5)

2
E - {/2 8 _ _ (»QME . :
S, |
32
-« JJ O(Jk? 2) ds . (B.20)
ax
S' E
The similar fechﬁique used for T .. yields

XX1J



e _ b gxfax' ( )
Tmo.s—*ZTYOLSn.“‘jk-:OLJ ' Ki{jkqr
zz1] N L, i 8 1 11
t
Xg=x' , T F
- KT(JkTPZ)‘E dz (B.21)
2 4 Xy
H e i)
6. Gyzij<r’r )
From equation (1.27)
k
Ho %™ (s { : : ] 0 o
Tyzij = Jun “ ax [Koldkyry) - Ky(dkyrp) | ds (8.22)
>
Again by (RB.3)
- b oy o sy, -} RB 2
Fyzij o fz QKO(JKTFT) Ko(jk1r2)3 ) dz' . (B.23)
t ' 2
b. Green's functions for the two-layered half space
1. Green's functions in the lTower half space.

Rewriti

ng Tox and 22

obtained in section 3, we have

B-7



; ( 1 2 =4 (Z+Z!)

oy = O Kg(jkzr) o J GE“ RTM e cos kx(xmx') dkx
0
(B.24)
. Ty, uplzez')
o, = 0o KO(JKZT) - 0 J GE‘ RxM e cos kx(xax ) dk |
0 (B.25)
where
o dwu 1
%2 2
2
C oy
w%«m ag-tanh uid
5 kY T 2u2d
Remy, = e
™ k2
2 2
5 + e tanh Uuid
k} 1
and d is the thickness of the first layer. The notation for the geometry

of a rectangular cell is given in Figure B.1.

The evaluation of primary potential KO(jkzr) is the same as was
discussed in the previous section with k? substituted by kz in the
expression. By using equation (B.5) and the relationships similar to

(B.3), we obtain

2
r-o,. = ki + ==1i7 as
XX <2 ax2> 2X

Sj
_ Xy rzi~z‘ “h
= - Zwuz S1 - szaz [x | KT(szr) dx!
3 “t
o 2 B - X z
RTM uzzj “upzt ‘ r °b
- Q e e sin k_(x,-x") dk
2 kx X7 X
0 4%z
(B.26)
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_ 2
B L o
1zxij JJ 3zox " 2x ds
S
J
IX” 1Zb
= ERVS
% KO(dx r) ‘x !z
9 t
© 2 . - Xz
¢ Rem ~UpZ: [ -U,Z tr b
- 0 J MELM e 27 ég 2 cos kx<xi“xi)j i dkx
0o 2 Xy 2¢
’ (B.27)
2
E (e |
Yxzij o j} x5z "2z 95
>
| {xr zy
= a, KO(JKZP) Sx }z
/Q/ P
o 2 X Z
R UnZ: [ =UnZ' B )
+ g _ ™ 21 e 2 cos k (x,,wx')§ dk
2 U, Xt 7 X
0 Xg t
(B.28)
2
O O a\ ;
2243 = jJ <}2 ¥ %z%j Moy 4
S!
J
= Zﬂ'OLZ S"ij
' Zh ?xiwx‘ 1 Xy
- szaz [ z K](jkgr)g j dz'
Zt 4 X
2
'k “UsZ: [ =U,z' e 2
) x 2 2% [ TUp? NERS
G j 2 Roy € ié sin kx(ximx >j ! ! dk,
0 "u XQ Zy
(B.29)



2. Green's functions on the surface.

f(;

from equations (3.5) and (3.6)

Rewriting Ty and ™

, @ u UaZ  =UqZ\ ~UnrZ
Ty, = O J TRTM M%A<% 1 +e I > e © cos kx(xWx'} dkx
0 U
(B.30)
C | 1 Uy z ] ~UyZ =u22' ) i
T, = O J RTM U?‘<% e e cos kx(xnx ) dk
: 0
(B.31)
where ap = - %%%-SZ
1
uzd
1 e sech qu
Ry = 2
U
2 a
5 * —= tanh ujd
ke W
1

Integrations of Green's functions at the kih field point (xks z), = 0)

are found to be

Fixk’ z=0 JJ ifg'ﬂ%x ds
J1 2y i 9 (B.32)
I 1RTM uzz' B *r %
= =P e @ sin k {x, -x") l dk
1 k x 7k w1y
0o X %t
2
E 9
szkj zk:O j{ Ixoz 1z ds
S
’ o [ U,z 15 %
- 2y | _aiﬁ-g 2" cos kx(kax’)J dk,
0o 2 Xy 17y (5.33)



-lE T’E = / Y

l:'.i.ijl,ZZ;:'O lzzkj Z~:O O ‘ \Bu34}
K k

ks = T =0 (5.35)

yxkJ Zk:O yzkj zk:O : .

The last two results for the vertical(z) electric field and the
horizontal(y) magnetic field are consistent with those concluded for the

homogeneous half space case.
g






